UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • Trichoderma Species Differ ...
    Guo, Yuan; Ghirardo, Andrea; Weber, Baris; Schnitzler, Jörg-Peter; Benz, J Philipp; Rosenkranz, Maaria

    Frontiers in microbiology, 04/2019, Volume: 10
    Journal Article

    Fungi of the genus are economically important due to their plant growth- and performance-promoting effects, such as improved nutrient supply, mycoparasitism of plant-pathogens and priming of plant defense. Due to their mycotrophic lifestyle, however, they might also be antagonistic to other plant-beneficial fungi, such as mycorrhiza-forming species. spp. release a high diversity of volatile organic compounds (VOCs), which likely play a decisive role in the inter-species communication. It has been shown that VOCs can inhibit growth of some plant pathogens, but their inhibition potentials during early interactions with mutualistic fungi remain unknown. is a common ectomycorrhizal fungus which in symbiotic relationship is well known to facilitate plant performance. Here, we investigated the VOC profiles of three strains of species, , and , as well as by stir bar sorptive extraction and gas chromatography - mass spectrometry (SBSE-GC-MS). We further examined the fungal performance and the VOC emission profiles during confrontation of the species with in different co-cultivation scenarios. The VOC profiles of the three species were highly species-dependent. was the strongest VOC emitter with the most diverse compound pattern, followed by and . Co-cultivation of spp. and altered the VOC emission patterns dramatically in some scenarios. The co-cultivations also revealed contact degree-dependent inhibition of one of the fungal partners. growth was at least partially inhibited when sharing the same headspace with . In direct contact between both mycelia, however, growth was impaired, indicating that and apply different effectors when defending their territory. Multivariate analysis demonstrated that all examined individual fungal species in axenic cultures, as well as their co-cultivations were characterized by a distinct VOC emission pattern. The results underline the importance of VOCs in fungal interactions and reveal unexpected adjustability of the VOC emissions according to the specific biotic environments.