UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed Open access
  • Enhanced Detection of Viral...
    Tejedor, Juan R.; Martín, Gabriel; Roberti, Annalisa; Mangas, Cristina; Santamarina-Ojeda, Pablo; Fernández Pérez, Raúl; López, Virginia; González Urdinguio, Rocío; Alba-Linares, Juan J.; Peñarroya, Alfonso; Álvarez-Argüelles, Marta E.; Boga, José A.; Fernández Fernández, Agustín; Rojo-Alba, Susana; Fernández Fraga, Mario

    Analytical chemistry (Washington), 05/2022, Volume: 94, Issue: 18
    Journal Article

    The accurate detection of nucleic acids from certain biological pathogens is critical for the diagnosis of human diseases. However, amplified detection of RNA molecules from a complex sample by direct detection of RNA/DNA hybrids remains a challenge. Here, we show that type IIS endonuclease FokI is able to digest DNA duplexes and DNA/RNA hybrids when assisted by a dumbbell-like fluorescent sensing oligonucleotide. As proof of concept, we designed a battery of sensing oligonucleotides against specific regions of the SARS-CoV-2 genome and interrogated the role of FokI relaxation as a potential nicking enzyme for fluorescence signal amplification. FokI-assisted digestion of SARS-CoV-2 probes increases the detection signal of ssDNA and RNA molecules and decreases the limit of detection more than 3.5-fold as compared to conventional molecular beacon approaches. This cleavage reaction is highly specific to its target molecules, and no detection of other highly related B-coronaviruses was observed in the presence of complex RNA mixtures. In addition, the FokI-assisted reaction has a high multiplexing potential, as the combined detection of different viral RNAs, including different SARS-CoV-2 variants, was achieved in the presence of multiple combinations of fluorophores and sensing oligonucleotides. When combined with isothermal rolling circle amplification technologies, FokI-assisted digestion reduced the detection time of SARS-CoV-2 in COVID-19-positive human samples with adequate sensitivity and specificity compared to conventional reverse transcription polymerase chain reaction approaches, highlighting the potential of FokI-assisted signal amplification as a valuable sensing mechanism for the detection of human pathogens.