UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • Non-Singlet Oxygen Kinetic ...
    Davis, Caroline A; McNeill, Kristopher; Janssen, Elisabeth M.-L

    Environmental science & technology, 09/2018, Volume: 52, Issue: 17
    Journal Article

    The kinetic solvent isotope effect (KSIE) is typically utilized in environmental photochemistry to elucidate whether a compound is susceptible to photooxidation by singlet oxygen (1O2), due to its known difference in lifetime in water (H2O) versus heavy water (D2O). Here, the overall indirect photodegradation rates of diarylamines in the presence of dissolved organic matter (DOM) were enhanced in D2O to a greater extent than expected based on their reactivity with 1O2. For each diarylamine, the relative contribution of reaction with 1O2 to the observed KSIE was determined from high resolution data of 1O2 lifetimes by time-resolved infrared luminescence spectroscopy. The additional enhancement in D2O beyond reaction with 1O2 contributed significantly to the observed KSIE for diarylamines (8–65%) and diclofenac (100%). The enhancement was ascribed to slower reduction of transient radical species of the diarylamines due to H/D exchange at DOM’s phenolic antioxidant moieties. A slower second-order reaction rate constant with a model antioxidant was verified for mefenamic acid radicals using transient absorption spectroscopy. Changes in lifetime and reactivity with triplet sensitizers were not responsible for the additional KSIE. Other pollutants with quenchable radical intermediates may also be susceptible to such an additional KSIE, which has to be considered when using the KSIE as a diagnostic tool.