UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed
  • Functional genomics by inte...
    Tohge, T; Nishiyama, Y; Hirai, M.Y; Yano, M; Nakajima, J; Awazuhara, M; Inoue, E; Takahashi, H; Goodenowe, D.B; Kitayama, M

    The Plant journal : for cell and molecular biology, April 2005, Volume: 42, Issue: 2
    Journal Article

    The integration of metabolomics and transcriptomics can provide precise information on gene-to-metabolite networks for identifying the function of unknown genes unless there has been a post-transcriptional modification. Here, we report a comprehensive analysis of the metabolome and transcriptome of Arabidopsis thaliana over-expressing the PAP1 gene encoding an MYB transcription factor, for the identification of novel gene functions involved in flavonoid biosynthesis. For metabolome analysis, we performed flavonoid-targeted analysis by high-performance liquid chromatography-mass spectrometry and non-targeted analysis by Fourier-transform ion-cyclotron mass spectrometry with an ultrahigh-resolution capacity. This combined analysis revealed the specific accumulation of cyanidin and quercetin derivatives, and identified eight novel anthocyanins from an array of putative 1800 metabolites in PAP1 over-expressing plants. The transcriptome analysis of 22 810 genes on a DNA microarray revealed the induction of 38 genes by ectopic PAP1 over-expression. In addition to well-known genes involved in anthocyanin production, several genes with unidentified functions or annotated with putative functions, encoding putative glycosyltransferase, acyltransferase, glutathione S-transferase, sugar transporters and transcription factors, were induced by PAP1. Two putative glycosyltransferase genes (At5g17050 and At4g14090) induced by PAP1 expression were confirmed to encode flavonoid 3-O-glucosyltransferase and anthocyanin 5-O-glucosyltransferase, respectively, from the enzymatic activity of their recombinant proteins in vitro and results of the analysis of anthocyanins in the respective T-DNA-inserted mutants. The functional genomics approach through the integration of metabolomics and transcriptomics presented here provides an innovative means of identifying novel gene functions involved in plant metabolism.