UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • A deep-learning technique f...
    Lee, Jin-Woong; Park, Woon Bae; Lee, Jin Hee; Singh, Satendra Pal; Sohn, Kee-Sun

    Nature communications, 01/2020, Volume: 11, Issue: 1
    Journal Article

    Here we report a facile, prompt protocol based on deep-learning techniques to sort out intricate phase identification and quantification problems in complex multiphase inorganic compounds. We simulate plausible powder X-ray powder diffraction (XRD) patterns for 170 inorganic compounds in the Sr-Li-Al-O quaternary compositional pool, wherein promising LED phosphors have been recently discovered. Finally, 1,785,405 synthetic XRD patterns are prepared by combinatorically mixing the simulated powder XRD patterns of 170 inorganic compounds. Convolutional neural network (CNN) models are built and eventually trained using this large prepared dataset. The fully trained CNN model promptly and accurately identifies the constituent phases in complex multiphase inorganic compounds. Although the CNN is trained using the simulated XRD data, a test with real experimental XRD data returns an accuracy of nearly 100% for phase identification and 86% for three-step-phase-fraction quantification.