UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed Open access
  • Computational investigation...
    Patel, Chirag N.; Jani, Siddhi P.; Prasanth Kumar, Sivakumar; Modi, Krunal M.; Kumar, Yogesh

    Computers in biology and medicine, December 2022, 2022-12-00, 20221201, Volume: 151, Issue: Pt A
    Journal Article

    The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significantly impacting human lives, overburdening the healthcare system and weakening global economies. Plant-derived natural compounds are being largely tested for their efficacy against COVID-19 targets to combat SARS-CoV-2 infection. The SARS-CoV-2 Main protease (Mpro) is considered an appealing target because of its role in replication in host cells. We curated a set of 7809 natural compounds by combining the collections of five databases viz Dr Duke's Phytochemical and Ethnobotanical database, IMPPAT, PhytoHub, AromaDb and Zinc. We applied a rigorous computational approach to identify lead molecules from our curated compound set using docking, dynamic simulations, the free energy of binding and DFT calculations. Theaflavin and ginkgetin have emerged as better molecules with a similar inhibition profile in both SARS-CoV-2 and Omicron variants. Display omitted •Constructing the library of anticancer compounds from various database.•Assessing the potency of these compounds for masking Main protease (Mpro) of SARS-CoV-2.•Molecular docking, dynamics simulation, MM/GBSA and DFT calculation.