UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Odprti dostop

  • 06/2019
    eBook

    Industry is the basis for prospering societies and central to economic development. As the source of almost one-quarter of CO2 emissions, it must also be a central part of the clean energy transition. Emissions from industry can be among the hardest to abate in the energy system, in particular due to process emissions that result from chemical or physical reactions and the need for high-temperature heat. A portfolio of technologies and approaches will be needed to address the decarbonisation challenge while supporting sustainable and competitive industries. Carbon capture, utilisation and storage (CCUS) is expected to play a critical role in this sustainable transformation. For some industrial and fuel transformation processes, CCUS is one of the most cost-effective solutions available for large-scale emissions reductions. In the IEA Clean Technology Scenario (CTS), which sets out a pathway consistent with the Paris Agreement climate ambition, CCUS contributes almost one-fifth of the emissions reductions needed across the industry sector. More than 28 gigatonnes of carbon dioxide (GtCO2) is captured from industrial processes in the period to 2060, the majority of it from the cement, steel and chemical subsectors. A strengthened and tailored policy response will be needed to support the transformation of industry consistent with climate goals while preserving competitiveness. The development of CO2 transport and storage networks for industrial CCUS hubs can reduce unit costs through economies of scale and facilitate investment in CO2 capture facilities. Establishing markets for premium lower-carbon materials – such as cement, steel and chemicals – through public and private procurement can also accelerate the adoption of CCUS and other lower-carbon industrial processes.