UNI-MB - logo
UMNIK - logo
 
E-viri
Recenzirano Odprti dostop
  • Identification and function...
    López‐Pérez, Mario; Ballester, Ana‐Rosa; González‐Candelas, Luis

    Molecular plant pathology, April 2015, Letnik: 16, Številka: 3
    Journal Article

    The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post‐harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up‐regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)‐based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall‐degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall‐related enzymes, redox homoeostasis and detoxification processes, confirmed their up‐regulation at varying time points during the infection process. Agrobacterium tumefaciens‐mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild‐type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum.