UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Strategies to determine pos...
    Nel, Isabelle; Ithayakumar, Ajeeva; Blumenthal, Noémie; Duneton, Charlotte; Khourouj, Valérie Guérin-El; Viala, Jérôme; Dollfus, Catherine; Baudouin, Véronique; Guilmin-Crepon, Sophie; Theodorou, Ioannis; Carcelain, Guislaine

    Journal of immunological methods, August 2024, Letnik: 531
    Journal Article

    During SARS-CoV-2 pandemic, the assessment of immune protection of people at risk of severe infection was an important goal. The appearance of VOCs (Variant of Concern) highlighted the limits of evaluating immune protection through the humoral response. While the humoral response partly loses its neutralizing activity, the anti-SARS-CoV-2 memory T cell response strongly cross protects against VOCs becoming an indispensable tool to assess immune protection. We compared two techniques available in laboratory to evaluate anti-SARS-CoV-2 memory T cell response in a cohort of infected or vaccinated patients with different levels of risk to develop a severe disease: the ELISpot assay and the T-Cell Lymphocyte Proliferation Assay respectively exploring IFNγ production and cell proliferation. We showed that the ELISpot assay detected more anti-Spike memory T cell response than the Lymphocyte Proliferation Assay. We next observed that the use of two different suppliers as antigenic source in the ELISpot assay did not affect the detection of anti-Spike memory T cell response. Finally, we explored a new approach for defining the positivity threshold, using unsupervised mixed Gaussian modeling, challenging the traditional ROC curve used by the supplier. That will be helpful in endemic situation where it could be difficult to recruit “negative” patients. •Quantification of anti-SARS-CoV-2 memory T cell response using IFNγ-ELISpot assay was higher as compared to T-cell LPA.•The use of different peptide pools did not impact detection of anti-SARS-CoV-2 memory T cell response by IFNγ-ELISpot assay.•We used an innovative approach, the mixed Gaussian modeling, to define new thresholds of anti-Spike memory T cell response.