UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano
  • Construction on vacuum-comp...
    Nishiguchi, H.; Evtoukhovitch, P.; Fujii, Y.; Hamada, E.; Kamei, N.; Mihara, S.; Moiseenko, A.; Noguchi, K.; Oishi, K.; Suzuki, J.; Tojo, J.; Tsamalaidze, Z.; Tsverava, N.; Ueno, K.; Volkov, A.

    Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 04/2020, Letnik: 958
    Journal Article

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10−16, 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for such an excellent sensitivity places several stringent requirements on the detector; (i) good momentum resolution, <2%, for 100 MeV/c electron, which is primarily limited by multiple scattering effect for this momentum region, and (ii) high rate capability, up to 5×109μ−/s muon beam by J-PARC. In order fulfil such requirements, we decided to develop the straw-base planar tracker which is operational in vacuum and made of an extremely light material. The COMET straw tracker consists of 10 mm diameter straw tube, longer than 1 m length, with 20μm-thick Mylar foil and 70 nm-thick aluminium cathode. Recently, two big milestones, detector-performance verification by the full-scale prototype with 100 MeV/c electron beam, and start the assembly of final straw tracker for COMET Phase-I, were achieved. In this article, details of these two big milestones are provided. In addition, some prospects on the straw tracker development towards the COMET Phase-II are also given.