UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Effect of Liquid Miscibilit...
    Preis, Jakub; Xu, Donghua; Paul, Brian K.; Eschbach, Peter A.; Pasebani, Somayeh

    Journal of Manufacturing and Materials Processing, 02/2024, Letnik: 8, Številka: 1
    Journal Article

    Joining of Cu-based dispersion-strengthened alloys to Ni-based superalloys has garnered increased attention for liquid rocket engine applications due to the high thermal conductivity of Cu-based alloys and high temperature tensile strength of Ni-based superalloys. However, such joints can suffer from cracking when joined via liquid state processes, leading to part failure. In this work, compositions of 15–95 wt.% GRCop42 are alloyed with Inconel 625 and characterized to better understand the root cause of cracking. Results indicate a lack of miscibility between Cu-deprived and Cu-rich liquids in compositions corresponding to 30–95 wt.% GRCop42. Two distinct morphologies are observed and explained by use of CALPHAD; Cu-deprived dendrites with Cu-rich interdendritic zones at 30–50 wt.% GRCop42 and Cu-deprived spheres surrounded by a Cu-rich matrix at 60–95 wt.% GRCop42. Phase analysis reveals brittle intermetallic phases precipitate in the 60–95 wt.% GRCop42 Cu-deprived region. Three cracking mechanisms are proposed herein that provide guidance on the avoidance of defects Ni-based superalloy to Cu-based dispersion strengthened alloy joints.