UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano
  • Experimental study of nucle...
    Chatillon, A.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H. T.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pellereau, E.; Pietri, S.; Prochazka, A.; Rodríguez-Sánchez, J. L.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.

    Physical review. C, 05/2019, Letnik: 99, Številka: 5
    Journal Article

    The inverse kinematics technique, applied to radioactive beams and combined to the Coulomb excitation method, is a powerful tool to study low-energy fission. A novel experimental setup was developed within the R3B/SOFIA (Reactions with Relativistic Radioactive Beams/Studies On FIssion with Aladin) collaboration to identify in mass and atomic numbers both fission fragments in coincidence. These new data provide elemental, isobaric, and isotonic yields for the fission along the thorium isotopic chain. Results are also compared to previous measurements using either the same reaction mechanism or thermal-neutron induced fission. This latter comparison permits to probe the influence of the excitation energy in the fission process.