UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Odprti dostop
  • Cortical Bone Vibrations In...
    Royer, Robert; Harders, Walter; Moore, Lee R.; Androjna, Caroline; Midura, Meredith; Kligman, Boris; Midura, Ronald J.; Zhang, Nianli; Waldorff, Erik I.; Ryaby, James T.; Zborowski, Maciej

    IEEE transactions on magnetics, 07/2022, Letnik: 58, Številka: 7
    Journal Article

    The purpose of our study was to test the hypothesis that the electromagnetic pulse (EMP) is capable of inducing mechanical vibrations in bone ex vivo . A thin segment of human femur diaphysis (from a tissue repository) suspended on a tensioned line (range <inline-formula> <tex-math notation="LaTeX">T = </tex-math></inline-formula> 2.2-123 N) was exposed to EMP (mean <inline-formula> <tex-math notation="LaTeX">B =0.64 </tex-math></inline-formula> T, dB / dt = 5877 T/s, and the mean <inline-formula> <tex-math notation="LaTeX">B </tex-math></inline-formula>-field gradient of 127 T/m) from a solenoid with axis orthogonal to tensioning line, forming a harmonic oscillator whose mechanical vibrations were measured using laser Doppler vibrometry (LDV, noise floor 1 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>/s). Calculated mean Maxwell stress and Lorentz forces acting on a weakly conducting, diamagnetic bone slice point away from the solenoid for maximum sensitivity of LDV measurement. The electromechanical origin of the LDV signal was confirmed by the order-of-magnitude agreement between calculated (range from 12 to 50 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>/s) and measured initial bone velocity amplitudes (e.g., <inline-formula> <tex-math notation="LaTeX">35.5~\mu \text{m} </tex-math></inline-formula>/s ± <inline-formula> <tex-math notation="LaTeX">7.5~\mu \text{m} </tex-math></inline-formula>/s at <inline-formula> <tex-math notation="LaTeX">T =22.2 </tex-math></inline-formula> N and <inline-formula> <tex-math notation="LaTeX">17.7~\mu \text{m} </tex-math></inline-formula>/s ± <inline-formula> <tex-math notation="LaTeX">2.5~\mu \text{m} </tex-math></inline-formula>/s at <inline-formula> <tex-math notation="LaTeX">T =58.2 </tex-math></inline-formula> N) and the increasing frequency (25-180 Hz) of decaying oscillations with the square root of <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> over the range of line tensions (<inline-formula> <tex-math notation="LaTeX">r^{2} =0.978 </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">p < 10^{-4} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">n =17 </tex-math></inline-formula>). Theory and experiment show that magnetic field impulses are capable of exerting measurable mechanical forces on bone ex vivo . The results raise an interesting question if the electromechanical effect could be sufficiently large to contribute to bone remodeling, reportedly sensitive to vibration amplitudes as small as 1 nm, and considering long duration of orthopedic therapy using repetitive EMP (months).