UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Identification of Motor Uni...
    Kalc, Milos; Skarabot, Jakob; Divjak, Matjaz; Urh, Filip; Kramberger, Matej; Vogrin, Matjaz; Holobar, Ales

    IEEE transactions on neural systems and rehabilitation engineering, 2023, Letnik: 31
    Journal Article

    We developed and tested the methodology that supports the identification of individual motor unit (MU) firings from the Hoffman (or H) reflex recorded by surface high-density EMG (HD-EMG). Synthetic HD-EMG signals were constructed from simulated 10% to 90% of maximum voluntary contraction (MVC), followed by 100 simulated H-reflexes. In each H-reflex the MU firings were normally distributed with mean latency of 20 ms and standard deviations (SDLAT) ranging from 0.1 to 1.3 ms. Experimental H-reflexes were recorded from the soleus muscle of 12 men (33.6 ± 5.8 years) using HD-EMG array of <inline-formula> <tex-math notation="LaTeX">{5}\times {13} </tex-math></inline-formula> surface electrodes. Participants performed 15 to 20 s long voluntary plantarflexions with contraction levels ranging from 10% to 70% MVC. Afterwards, at least 60 H-reflexes were electrically elicited at three levels of background muscle activity: rest, 10% and 20% MVC. HD-EMGs of voluntary contractions were decomposed using the Convolution Kernel Compensation method to estimate the MU filters. When applied to HD-EMG signals with synthetic H reflexes, MU filters demonstrated high MU identification accuracy, especially for <inline-formula> <tex-math notation="LaTeX">\text {SD}_{\text {LAT}}>{0.3} </tex-math></inline-formula> ms. When applied to experimental H-reflex recordings, the MU filters identified 14.1 ± 12.1, 18.2 ± 12.1 and 20.8 ± 8.7 firings per H-reflex, with individual MU firing latencies of 35.9 ± 3.3, 35.1 ± 3.0 and 34.6 ± 3.3 ms for rest, 10% and 20% MVC background muscle activity, respectively. Standard deviation of MU latencies across experimental H-reflexes were 1.0 ± 0.8, 1.3 ± 1.1 and 1.5 ± 1.2 ms, in agreement with intramuscular EMG studies.