UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Bridging the Reality Gap in...
    Craig, D. L.; Moon, H.; Fedele, F.; Lennon, D. T.; van Straaten, B.; Vigneau, F.; Camenzind, L. C.; Zumbühl, D. M.; Briggs, G. A. D.; Osborne, M. A.; Sejdinovic, D.; Ares, N.

    Physical review. X, 01/2024, Letnik: 14, Številka: 1
    Journal Article

    The discrepancies between reality and simulation impede the optimization and scalability of solid-state quantum devices. Disorder induced by the unpredictable distribution of material defects is one of the major contributions to the reality gap. We bridge this gap using physics-aware machine learning, in particular, using an approach combining a physical model, deep learning, Gaussian random field, and Bayesian inference. This approach enables us to infer the disorder potential of a nanoscale electronic device from electron-transport data. This inference is validated by verifying the algorithm’s predictions about the gate-voltage values required for a laterally defined quantum-dot device in AlGaAs/GaAs to produce current features corresponding to a double-quantum-dot regime.