UNI-MB - logo
UMNIK - logo
 
E-viri
Recenzirano Odprti dostop
  • The permanent ellipticity o...
    Bhattacharyya, Sudip

    Monthly notices of the Royal Astronomical Society, 10/2020, Letnik: 498, Številka: 1
    Journal Article

    ABSTRACT A millisecond pulsar having an ellipticity, which is an asymmetric mass distribution around its spin-axis, could emit continuous gravitational waves, which have not been detected so far. An indirect way to infer such waves is to estimate the contribution of the waves to the spin-down rate of the pulsar. The transitional pulsar PSR J1023+0038 is ideal and unique for this purpose because this is the only millisecond pulsar for which the spin-down rate has been measured in both accreting and non-accreting states. Here, we infer, from our formalism based on the complete torque budget equations and the pulsar magnetospheric origin of observed γ-rays in the two states, that PSR J1023+0038 should emit gravitational waves due to a permanent ellipticity of the pulsar. The formalism also explains some other main observational aspects of this source in a self-consistent way. As an example, our formalism naturally infers the accretion disc penetration into the pulsar magnetosphere, and explains the observed X-ray pulsations in the accreting state using the standard and well-accepted scenario. This, in turn, infers the larger pulsar spin-down power in the accreting state, which, in our formalism, explains the observed larger γ-ray emission in this state. Exploring wide ranges of parameter values of PSR J1023+0038, and not assuming an additional source of stellar ellipticity in the accreting state, we find the misaligned mass quadrupole moment of the pulsar in the range of (0.92–1.88) × 1036 g cm2, implying an ellipticity range of (0.48–0.93) × 10−9.