UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano
  • A CdSe/ZnS quantum dot-base...
    Gvozdev, D.A.; Maksimov, E.G.; Strakhovskaya, M.G.; Moysenovich, A.M.; Ramonova, A.A.; Moisenovich, M.M.; Goryachev, S.N.; Paschenko, V.Z.; Rubin, A.B.

    Journal of photochemistry and photobiology. B, Biology, 10/2018, Letnik: 187
    Journal Article

    Enhancement of optical properties of photosensitizers by additional light-harvesting antennas is promising for the improvement of the photodynamic therapy. However, large number of parameters determine interactions of nanoparticles and photosensitizers in complex and, thus the photodynamic efficacy of the hybrid structure. In order to achieve high efficiency of energetic coupling and photodynamic activity of such complexes it is important to know the location of the photosensitizer molecule on the nanoparticle, because it affects the spectral properties of the photosensitizer and the stability of the hybrid complex in vitro/in vivo. In this work complexes of polycationic aluminum phthalocyanines and CdSe/ZnS quantum dots were obtained. We used quantum dots which outer shell consists of polymer with carboxyl groups and provides water solubility and the negative charge of the nanoparticle. We found that phthalocyanine molecules could penetrate deeply into the polymer shell of quantum dot, leading thereby to significant changes in the spectral and photodynamic properties of phthalocyanines. We also showed that noncovalent interactions between phthalocyanine and quantum dot provide possibility for a release of the phthalocyanine from the hybrid complex and its binding to both Gram-positive and Gram-negative bacterial cells. Also, detailed characterization of the nanoparticle core and shell sizes was carried out. •Binding to QDs affects spectral and photodynamic characteristics of Pcs•Upon binding Pcs can penetrate deeply into the polymer shell of QD•Pcs could be released from the hybrid complex due to interaction with bacterial cell