UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano
  • Nano-fibrous SrCe0·8Y0·2O3-...
    Lee, Kan-Rong; Tseng, Chung-Jen; Chang, Jeng-Kuei; Wang, Kuan-Wen; Huang, Yu-Shuo; Chou, Tzu-Chi; Tsai, Li-Duan; Lee, Sheng-Wei

    Journal of power sources, 10/2019, Letnik: 436
    Journal Article

    This study presents a nanofiber-derived functional anode consisting of proton-conducting SrCe0·8Y0·2O3-δ nanofibers and electro-catalytic Ni for proton-conducting solid oxide fuel cells. Fuel cell testing with the nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode exhibits a maximum power density of 201.0 mW/cm2 at 800 °C, which is significantly higher than those of cells with a powder-derived Ba0·8Sr0·2Ce0·6Zr0·2Y0·2O3-δ-Ni anode or a nano-fibrous SrCe0·8Y0·2O3-δ anode. Its relatively lower ohmic resistance can be explained in terms of protonic and electronic “highways” throughout the nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode. The significantly lower polarization resistance elements, R1and R2, further indicate that the nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode has superior catalytic activity for the hydrogen oxidation reaction and thus generates more protons that can participate in the cathode reactions. The results show that the performance enhancement in the fuel cell with the nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode can be attributed to its low ohmic resistance, excellent electrode catalytic activity, and good gas transport property. Display omitted •Nano-fibrous SCY-Ni anode has been fabricated to boost P-SOFCs for the first time.•The fuel cell exhibits a significantly enhanced peak power density.•The lower ohmic resistance can be attributed to “highways” throughout the anode.•Nano-fibrous SCY-Ni anode has sufficient catalytic activity for HOR.•Both polarization resistance elements, R1 and R2, are the lowest among all cells.