UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano
  • Neutron radiography, a powe...
    Zhang, Peng; Wittmann, Folker H.; Zhao, Tie-jun; Lehmann, Eberhard H.; Vontobel, Peter

    Nuclear engineering and design, 12/2011, Letnik: 241, Številka: 12
    Journal Article, Conference Proceeding

    ► For the first time water movement in cement-based materials could be quantified in a non-destructive way. ► neutron radiography has a sensitivity and a spatial resolution unknown so far. ► Results are essential for prediction of service life. ► Results will contribute to more durable and more ecological construction. Service life of reinforced concrete structures is often limited by penetration of water and compounds dissolved in water into concrete. Concrete can be damaged in this way and corrosion of steel reinforcement can be initiated. There is an urgent need to study water penetration into concrete in order to better understand deterioration mechanisms and to find appropriate ways to improve durability. Neutron radiography provides us with an advanced non-destructive technique with high spatial resolution and extraordinary sensitivity. In this contribution, neutron radiography was successfully applied to study the process of water absorption of two types of concrete with different water–cement ratios, namely 0.4 and 0.6. The influence cracks and of water repellent treatment on water absorption has been studied on mortar specimens. It is possible to visualize migration of water into concrete and other cement-based composites and to quantify the time-dependent moisture distributions as function of time with high spatial resolution by means of neutron radiography. Water penetration depth obtained from neutron radiography is in good agreement with corresponding values obtained from capillary suction tests. Surface impregnation of concrete with silane prevents capillary uptake of water. Even fine cracks are immediately filled with water as soon as the surface gets in contact. Results provide us with a solid basis for a better understanding of deteriorating processes in concrete and other cement-based materials.