UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano
  • Red Blood Cell Membrane as ...
    Rao, Lang; Bu, Lin-Lin; Xu, Jun-Hua; Cai, Bo; Yu, Guang-Tao; Yu, Xiaolei; He, Zhaobo; Huang, Qinqin; Li, Andrew; Guo, Shi-Shang; Zhang, Wen-Feng; Liu, Wei; Sun, Zhi-Jun; Wang, Hao; Wang, Tza-Huei; Zhao, Xing-Zhong

    Small (Weinheim an der Bergstrasse, Germany) 11, Številka: 46
    Journal Article

    For decades, poly(ethylene glycol) (PEG) has been widely incorporated into nanoparticles for evading immune clearance and improving the systematic circulation time. However, recent studies have reported a phenomenon known as “accelerated blood clearance (ABC)” where a second dose of PEGylated nanomaterials is rapidly cleared when given several days after the first dose. Herein, we demonstrate that natural red blood cell (RBC) membrane is a superior alternative to PEG. Biomimetic RBC membrane‐coated Fe3O4 nanoparticles (Fe3O4@RBC NPs) rely on CD47, which is a “don't eat me” marker on the RBC surface, to escape immune clearance through interactions with the signal regulatory protein‐alpha (SIRP‐α) receptor. Fe3O4@RBC NPs exhibit extended circulation time and show little change between the first and second doses, with no ABC suffered. In addition, the administration of Fe3O4@RBC NPs does not elicit immune responses on neither the cellular level (myeloid‐derived suppressor cells (MDSCs)) nor the humoral level (immunoglobulin M and G (IgM and IgG)). Finally, the in vivo toxicity of these cell membrane‐camouflaged nanoparticles is systematically investigated by blood biochemistry, hematology testing, and histology analysis. These findings are significant advancements toward solving the long‐existing clinical challenges of developing biomaterials that are able to resist both immune response and rapid clearance. Red blood cell membrane‐camouflaged Fe3O4 nanoparticles (Fe3O4@RBC NPs) exhibit prolonged circulation time in the blood with no adverse effects. There is little change between a first and second dose, and no accelerated blood clearance is seen, as is generally the case for PEGylated nanomaterials. This is a significant advancement toward developing biomaterials that are able to resist both immune response and rapid clearance.