UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano
  • Nitrogen‐Doped Single Graph...
    Choi, Seon‐Jin; Yu, Hayoung; Jang, Ji‐Soo; Kim, Min‐Hyeok; Kim, Sang‐Joon; Jeong, Hyeon Su; Kim, Il‐Doo

    Small (Weinheim an der Bergstrasse, Germany), 03/2018, Letnik: 14, Številka: 13
    Journal Article

    Humidity sensors are essential components in wearable electronics for monitoring of environmental condition and physical state. In this work, a unique humidity sensing layer composed of nitrogen‐doped reduced graphene oxide (nRGO) fiber on colorless polyimide film is proposed. Ultralong graphene oxide (GO) fibers are synthesized by solution assembly of large GO sheets assisted by lyotropic liquid crystal behavior. Chemical modification by nitrogen‐doping is carried out under thermal annealing in H2(4%)/N2(96%) ambient to obtain highly conductive nRGO fiber. Very small (≈2 nm) Pt nanoparticles are tightly anchored on the surface of the nRGO fiber as water dissociation catalysts by an optical sintering process. As a result, nRGO fiber can effectively detect wide humidity levels in the range of 6.1–66.4% relative humidity (RH). Furthermore, a 1.36‐fold higher sensitivity (4.51%) at 66.4% RH is achieved using a Pt functionalized nRGO fiber (i.e., Pt‐nRGO fiber) compared with the sensitivity (3.53% at 66.4% RH) of pure nRGO fiber. Real‐time and portable humidity sensing characteristics are successfully demonstrated toward exhaled breath using Pt‐nRGO fiber integrated on a portable sensing module. The Pt‐nRGO fiber with high sensitivity and wide range of humidity detection levels offers a new sensing platform for wearable humidity sensors. Nitrogen‐doped graphene fiber functionalized by Pt nanoparticles (Pt‐nRGO fiber) is integrated on a flexible and transparent polyimide substrate for application in real‐time and on‐site monitoring of humidity. This work demonstrates the humidity sensing characteristic of Pt‐nRGO fiber, which further expands versatility of graphene‐based fiber in wearable sensing electronics.