UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano
  • Characterizing Ice Nucleati...
    Moore, Kathryn A.; Hill, Thomas C. J.; McCluskey, Christina S.; Twohy, Cynthia H.; Rainwater, Bryan; Toohey, Darin W.; Sanchez, Kevin J.; Kreidenweis, Sonia M.; DeMott, Paul J.

    Journal of geophysical research. Atmospheres, 01/2024, Letnik: 129, Številka: 2
    Journal Article

    Abstract Supercooled liquid clouds are ubiquitous over the Southern Ocean (SO), even to temperatures below −20°C, and comprise a large fraction of the marine boundary layer (MBL) clouds. Earth system models and reanalysis products have struggled to reproduce the observed cloud phase distribution and occurrence of cloud ice in the region. Recent simulations found the microphysical representation of ice nucleation and growth has a large impact on these properties, however, measurements of SO ice nucleating particles (INPs) to validate simulations are sparse. This study presents measurements of INPs from simultaneous aircraft and ship campaigns conducted over the SO in austral summer 2018, which include the first in situ observations in and above cloud in the region. Our results confirm recent observations that INP concentrations are uniformly lower than measurements made in the late 1960s. While INP concentrations below and above cloud are similar, higher ice nucleation efficiency above cloud supports model simulations that the dominant INP composition varies with height. Model parameterizations based solely on aerosol properties capture the mean relationship between INP concentration and temperature but not the observed variability, which is likely related to the only modest correlations observed between INPs and environmental or aerosol metrics. Including wind speed in addition to activation temperature in a marine INP parameterization reduces bias but does not explain the large range of observed INP concentrations. Direct and indirect inference of marine INP size suggests MBL INPs, at least during Austral summer, are dominated by particles with diameters smaller than 500 nm.