UNI-MB - logo
UMNIK - logo
 
E-viri
Recenzirano Odprti dostop
  • PLCK G165.7+67.0: Analysis ...
    Frye, Brenda L.; Pascale, Massimo; Qin, Yujing; Zitrin, Adi; Diego, José; Walth, Greg; Yan, Haojing; Conselice, Christopher J.; Alpaslan, Mehmet; Bauer, Adam; Busoni, Lorenzo; Coe, Dan; Cohen, Seth H.; Dole, Hervé; Donahue, Megan; Georgiev, Iskren; Jansen, Rolf A.; Limousin, Marceau; Livermore, Rachael; Norman, Dara; Rabien, Sebastian; Windhorst, Rogier A.

    Astrophysical journal/˜The œAstrophysical journal, 01/2019, Letnik: 871, Številka: 1
    Journal Article

    We present Hubble Space Telescope WFC3-IR imaging in the fields of six apparently bright dusty star-forming galaxies (DSFGs) at z = 2-4 identified by their rest-frame far-infrared colors using the Planck and Herschel space facilities. We detect near-infrared counterparts for all six submillimeter sources, allowing us to undertake strong-lensing analyses. One field in particular stands out for its prominent giant arcs, PLCK G165.7+67.0 (G165). After combining the color and morphological information, we identify 11 sets of image multiplicities in this one field. We construct a strong-lensing model constrained by this lensing evidence, which uncovers a bimodal spatial mass distribution, and from which we measure a mass of (2.6 0.11) × 1014 M within ∼250 kpc. The bright (S350 750 mJy) DSFG appears as two images: a giant arc with a spatial extent of that is merging with the critical curve, and a lower-magnification counterimage that is detected in our new longer-wavelength ground- and space-based imaging data. Using our ground-based spectroscopy, we calculate a dynamical mass of M to the same fixed radius, although this value may be inflated relative to the true value if the velocity distribution is enhanced in the line-of-sight direction. We suggest that the bimodal mass taken in combination with the weak X-ray flux and low SZ decrement may be explained as a pre-merger for which the intracluster gas is diluted along the line of sight, while the integrated surface mass density is supercritical to strong-lensing effects.