UNI-MB - logo
UMNIK - logo
 
E-viri
Recenzirano Odprti dostop
  • Targeted scavenging of extr...
    Deng Hongzhang; Yang, Weijing; Zhou, Zijian; Tian Rui; Lin, Lisen; Ma, Ying; Song Jibin; Chen, Xiaoyuan

    Nature communications, 10/2020, Letnik: 11, Številka: 1
    Journal Article

    Immunogenic cell death (ICD) and tumour-infiltrating T lymphocytes are severely weakened by elevated reactive oxygen species (ROS) in the tumour microenvironment. It is therefore of critical importance to modulate the level of extracellular ROS for the reversal of immunosuppressive environment. Here, we present a tumour extracellular matrix (ECM) targeting ROS nanoscavenger masked by pH sensitive covalently crosslinked polyethylene glycol. The nanoscavenger anchors on the ECM to sweep away the ROS from tumour microenvironment to relieve the immunosuppressive ICD elicited by specific chemotherapy and prolong the survival of T cells for personalized cancer immunotherapy. In a breast cancer model, elimination of the ROS in tumour microenvironment elicited antitumour immunity and increased infiltration of T lymphocytes, resulting in highly potent antitumour effect. The study highlights a strategy to enhance the efficacy of cancer immunotherapy by scavenging extracellular ROS using advanced nanomaterials.Reactive oxygen species in the tumour microenvironment can have an immunosuppressive effect. Here, the authors devise a nanoparticle that anchors to the extracellular matrix within tumours and scavenges reactive oxygen species, resulting in an enhanced immune response within the tumour.