UNI-MB - logo
UMNIK - logo
 
E-viri
Recenzirano Odprti dostop
  • Cholesterol uptake disrupti...
    Guillaumond, Fabienne; Bidaut, Ghislain; Ouaissi, Mehdi; Servais, Stéphane; Gouirand, Victoire; Olivares, Orianne; Lac, Sophie; Borge, Laurence; Roques, Julie; Gayet, Odile; Pinault, Michelle; Guimaraes, Cyrille; Nigri, Jérémy; Loncle, Céline; Lavaut, Marie-Noëlle; Garcia, Stéphane; Tailleux, Anne; Staels, Bart; Calvo, Ezequiel; Tomasini, Richard; Iovanna, Juan Lucio; Vasseur, Sophie

    Proceedings of the National Academy of Sciences, 02/2015, Letnik: 112, Številka: 8
    Journal Article

    The malignant progression of pancreatic ductal adenocarcinoma (PDAC) is accompanied by a profound desmoplasia, which forces proliferating tumor cells to metabolically adapt to this new microenvironment. We established the PDAC metabolic signature to highlight the main activated tumor metabolic pathways. Comparative transcriptomic analysis identified lipid-related metabolic pathways as being the most highly enriched in PDAC, compared with a normal pancreas. Our study revealed that lipoprotein metabolic processes, in particular cholesterol uptake, are drastically activated in the tumor. This process results in an increase in the amount of cholesterol and an overexpression of the low-density lipoprotein receptor (LDLR) in pancreatic tumor cells. These findings identify LDLR as a novel metabolic target to limit PDAC progression. Here, we demonstrate that shRNA silencing of LDLR, in pancreatic tumor cells, profoundly reduces uptake of cholesterol and alters its distribution, decreases tumor cell proliferation, and limits activation of ERK1/2 survival pathway. Moreover, blocking cholesterol uptake sensitizes cells to chemotherapeutic drugs and potentiates the effect of chemotherapy on PDAC regression. Clinically, high PDAC Ldlr expression is not restricted to a specific tumor stage but is correlated to a higher risk of disease recurrence. This study provides a precise overview of lipid metabolic pathways that are disturbed in PDAC. We also highlight the high dependence of pancreatic cancer cells upon cholesterol uptake, and identify LDLR as a promising metabolic target for combined therapy, to limit PDAC progression and disease patient relapse. Significance Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second deadliest cancer by 2030. Advances in therapeutic treatments are urgently required to fight against this fatal disease. Here, elucidation of the metabolic signature of PDAC has identified the low-density lipoprotein receptor (LDLR), which facilitates cholesterol uptake, as a promising therapeutic target. Blocking of LDLR reduces the proliferative and clonogenic potential of PDAC cells and decreases activation of the ERK1/2 survival pathway. Moreover, LDLR silencing sensitizes PDAC cells to chemotherapeutic drugs and potentiates the tumoral regression promoted by chemotherapy. Finally, Ldlr is highly expressed at all stages of human PDAC and expression is associated with an increased risk of PDAC recurrence.