UNI-MB - logo
UMNIK - logo
 
E-viri
Recenzirano Odprti dostop
  • NQO1 targeting prodrug trig...
    Li, Xiaoguang; Liu, Zhida; Zhang, Anli; Han, Chuanhui; Shen, Aijun; Jiang, Lingxiang; Boothman, David A; Qiao, Jian; Wang, Yang; Huang, Xiumei; Fu, Yang-Xin

    Nature communications, 07/2019, Letnik: 10, Številka: 1
    Journal Article

    Lack of proper innate sensing inside tumor microenvironment (TME) limits T cell-targeted immunotherapy. NAD(P)H:quinone oxidoreductase 1 (NQO1) is highly enriched in multiple tumor types and has emerged as a promising target for direct tumor-killing. Here, we demonstrate that NQO1-targeting prodrug β-lapachone triggers tumor-selective innate sensing leading to T cell-dependent tumor control. β-Lapachone is catalyzed and bioactivated by NQO1 to generate ROS in NQO1 tumor cells triggering oxidative stress and release of the damage signals for innate sensing. β-Lapachone-induced high mobility group box 1 (HMGB1) release activates the host TLR4/MyD88/type I interferon pathway and Batf3 dendritic cell-dependent cross-priming to bridge innate and adaptive immune responses against the tumor. Furthermore, targeting NQO1 is very potent to trigger innate sensing for T cell re-activation to overcome checkpoint blockade resistance in well-established tumors. Our study reveals that targeting NQO1 potently triggers innate sensing within TME that synergizes with immunotherapy to overcome adaptive resistance.