UNI-MB - logo
UMNIK - logo
 
E-viri
Recenzirano Odprti dostop
  • Integrated reactive nitroge...
    Gu, Baojing; Xiaotang Ju; Jie Chang; Ying Ge; Peter M. Vitousek

    Proceedings of the National Academy of Sciences, 07/2015, Letnik: 112, Številka: 28
    Journal Article

    China is the world’s largest producer of reactive nitrogen (Nr), and Nr in the form of synthetic fertilizer has contributed substantially to increased food production there. However, Nr losses from overuse and misuse of fertilizer, combined with industrial emissions, represent a serious and growing cause of air and water pollution. This paper presents a substantially complete and coherent Nr budget for China and for 14 subsystems within China from 1980 to 2010, evaluates human health/longevity and environmental consequences of excess Nr, and explores several scenarios for Nr in China in 2050. These scenarios suggest that reasonable pathways exist whereby excess Nr could be reduced substantially, while at the same time benefitting human well-being and environmental health. Reactive nitrogen (Nr) plays a central role in food production, and at the same time it can be an important pollutant with substantial effects on air and water quality, biological diversity, and human health. China now creates far more Nr than any other country. We developed a budget for Nr in China in 1980 and 2010, in which we evaluated the natural and anthropogenic creation of Nr, losses of Nr, and transfers among 14 subsystems within China. Our analyses demonstrated that a tripling of anthropogenic Nr creation was associated with an even more rapid increase in Nr fluxes to the atmosphere and hydrosphere, contributing to intense and increasing threats to human health, the sustainability of croplands, and the environment of China and its environs. Under a business as usual scenario, anthropogenic Nr creation in 2050 would more than double compared with 2010 levels, whereas a scenario that combined reasonable changes in diet, N use efficiency, and N recycling could reduce N losses and anthropogenic Nr creation in 2050 to 52% and 64% of 2010 levels, respectively. Achieving reductions in Nr creation (while simultaneously increasing food production and offsetting imports of animal feed) will require much more in addition to good science, but it is useful to know that there are pathways by which both food security and health/environmental protection could be enhanced simultaneously.