UNI-MB - logo
UMNIK - logo
 
E-viri
Recenzirano Odprti dostop
  • Identification of a triplet...
    Stern, Hannah L; Andrew J. Musser; Simon Gelinas; Patrick Parkinson; Laura M. Herz; Matthew J. Bruzek; John Anthony; Richard H. Friend; Brian J. Walker

    Proceedings of the National Academy of Sciences, 06/2015, Letnik: 112, Številka: 25
    Journal Article

    Significance We use transient spectroscopy to investigate the mechanism of singlet exciton fission, a quantum mechanical phenomenon in some organic molecules in which a spin-singlet excited state can split into two spin-triplet states. This process may be harnessed to boost solar cell efficiencies, but the underlying mechanism remains poorly understood. Central to most models is a triplet pair state, consisting of two triplets entangled into an overall spin-singlet configuration, but it has never before been optically detected. In a solution-based system, we detect a state with simultaneous singlet and triplet exciton character that dissociates to form triplet excitons in 120% yield. We consider that this intermediate constitutes a triplet pair state, and its observation allows important insight into the nature of triplet exciton coupling. Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)TIPS—tetracene we find rapid (<100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process.