UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • A high-granularity timing d...
    Casado, M.P.; Adam Bourdarios, C.; Belfkir, M.; Berger, N.; Costanza, F.; Cueto, A.; Delmastro, M.; Di Ciaccio, L.; Franco, L.; Goy, C.; Guillemin, T.; Hryn’ova, T.; Jézéquel, S.; Koletsou, I.; Lafaye, R.; Levêque, J.; Lorenzo Martinez, N.; Portales, L.; Sauvan, E.; Wingerter-Seez, I.; Agaras, M.N.; Barbe, W.M.; Boumediene, D.; Calvet, D.; Calvet, S.; Donini, J.; Jimenez Morales, F.A.; Jouve, F.; Lambert, D.; Madar, R.; Manen, S.; Megy, T.; Nibigira, E.; Royer, L.; Rustige, L.; Santoni, C.; Soulier, A.; Vandaele, R.; Vazeille, F.; Collot, J.; Crépé-Renaudin, S.; Delsart, P.A.; Genest, M.H.; Hulsken, R.; Kuna, M.; Lleres, A.; Lucotte, A.; Malek, F.; Portillo Quintero, D.M.; Stark, J.; Trocmé, B.; Agapopoulou, C.; Al Khoury, K.; Atmani, H.; Bassalat, A.; Blot, A.; Bonis, J.; de Vivie De Regie, J.B.; Delgove, D.; Delporte, C.; Duflot, L.; Escalier, M.; Falou, A.C.; Fayard, L.; Fournier, D.; Ghosh, A.; Grivaz, J.-F.; Guerguichon, A.; Hohov, D.; Hrivnac, J.; Iconomidou-Fayard, L.; Kotsokechagia, A.; Lounis, A.; Makovec, N.; Migayron, A.; Morange, N.; Perego, M.M.; Petroff, P.; Puzo, P.; Rousseau, D.; Rybkin, G.; Sacerdoti, S.; Schaffer, A.C.; Serin, L.; Simion, S.; Tanaka, R.; Trofymov, A.; Varouchas, D.; Zerwas, D.; Zhang, Z.; Rahal, G.; Aad, G.; Barbero, M.; Bartolini, G.; Calvet, T.P.; Coadou, Y.; Diaconu, C.; Djama, F.; Duperrin, A.; Feligioni, L.

    Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2022, Letnik: 1032
    Journal Article

    The large increase of pileup interactions is one of the main experimental challenges for the HL-LHC physics programme. A powerful new way to mitigate the effects of pileup is to use high-precision timing information to distinguish between collisions occurring close in space but well-separated in time. A High-Granularity Timing Detector, based on low gain avalanche detector technology, is therefore proposed for the ATLAS Phase-II upgrade. Covering the pseudorapidity region between 2.4 and 4.0, this device will improve the detector physics performance in the forward region. The typical number of hits per track in the detector was optimized so that the target average time resolution per track for a minimum-ionising particle is 30 ps at the start of lifetime, increasing to 50 ps at the end of HL-LHC operation. The high-precision timing information improves the pileup reduction to improve the forward object reconstruction, complementing the capabilities of the upgraded Inner Tracker (ITk) in the forward regions of ATLAS and leading to an improved performance for both jet and lepton reconstruction. These improvements in object reconstruction performance translate into sensitivity gains and enhance the reach of the ATLAS physics programme at the HL-LHC. In addition, the HGTD offers unique capabilities for the online and offline luminosity determination, an important requirement for precision physics measurements.