UNI-MB - logo
UMNIK - logo
 
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Disentangling the sources o...
    Cardani, L.; Colantoni, I.; Cruciani, A.; De Dominicis, F.; D’Imperio, G.; Laubenstein, M.; Mariani, A.; Pagnanini, L.; Pirro, S.; Tomei, C.; Casali, N.; Ferroni, F.; Frolov, D.; Gironi, L.; Grassellino, A.; Junker, M.; Kopas, C.; Lachman, E.; McRae, C. R. H.; Mutus, J.; Nastasi, M.; Pappas, D. P.; Pilipenko, R.; Sisti, M.; Pettinacci, V.; Romanenko, A.; Van Zanten, D.; Vignati, M.; Withrow, J. D.; Zhelev, N. Z.

    The European physical journal. C, Particles and fields, 01/2023, Letnik: 83, Številka: 1
    Journal Article

    Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and γ -rays emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits. We present a GEANT-4 based simulation to predict the rate of impacts and the amount of energy released in a qubit chip from each of the mentioned sources. We finally propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment.