UP - logo
E-resources
Full text
Peer reviewed
  • Zhou, Renjie; Yu, Jiahao; Li, Shuo; Zhang, Jian; Wang, Chenqiang; Zhang, Lianfu

    Journal of agricultural and food chemistry, 2020-Dec-09, Volume: 68, Issue: 49
    Journal Article

    Amadori compounds (ACs; -(1-deoxy-d-fructos-1-yl)-amino acid) are superior flavor precursors and potential functional ingredients in food processing. In this study, vacuum dehydration as an excellent and universal method for the formation of ACs in both simulation systems and food processing was revealed. In total, 12 amino acids referring to all six categories were selected to conduct simulated reactions with glucose in aqueous models. At 90 °C, yields of 11 ACs were significantly increased by vacuum dehydration, reaching 4-198 times compared to a heat sealing reaction in aqueous systems, and formation of 5-hydroxymethyl-2-furaldehyde (5-HMF) and browning were slower than that by a dry powder reaction. In particular, the yields of Fru-Arg, Fru-His, and Fru-Glu reached 87.03, 90.73, and 89.88 mol %, respectively. The order of promotion effect was acid ACs > basic ACs > unique ACs > polar neutral ACs > aliphatic ACs > aromatic ACs. The excellent effect was mainly attributed to the control of water activity (Aw) and pH, which enabled the models to reach the optimal reaction state quickly by adjusting the vacuum degree at mild temperatures. The method was also applied to AC enrichment in tomato sauce processing; the AC content could rise to 30.72 mg/g, which was more than 17 times than those in samples without vacuum dehydration and two commercial tomato sauces.