UP - logo
E-resources
Full text
Peer reviewed
  • MiR-525-5p Repressed Metast...
    Chen, Mei; Liu, Li-xiu

    Digestive diseases and sciences, 08/2020, Volume: 65, Issue: 8
    Journal Article

    Background Accumulating evidence indicated that miRNAs are important regulators involved in cancer biology. Aims We aimed to investigate the biological functions and potentially underlying molecular mechanism of miR-525-5p in CC. Methods RT-PCR and Western blot assay were performed to detect mRNA and protein expression. Cell proliferation, anoikis resistance, and cell invasion were analyzed. Results We observed that the expression of miR-525-5p was declined in several CC cell lines. Additionally, introduction of miR-525-5p dramatically hampered cell viability, invasiveness, and migration ability through modulating epithelial-to-mesenchymal transition (EMT) marked genes as reflected by the upregulation of E-cadherin, as well as the downregulation of vimentin and N-cadherin. Furthermore, administration of miR-525-5p markedly reduced anchorage-independent growth and anoikis resistance accompanied by a decrease in the expression of anti-apoptotic protein Bcl-2 and an increase in the expression of pro-apoptotic protein Bax, C-caspase 3, and C-PARP1. Most importantly, analysis using publicly available algorithms predicted that UBE2C was a direct and functional target of miR-525-5p. Luciferase assays coupled with RT-PCR and Western blot analysis further verified that miR-525-5p negatively regulated UBE2C expression. Interestingly, miR-525-5p modulated ZEB1/2 expression via targeting UBE2C. Mechanically, administration of UBE2C partially blunted the salutary effects of miR-525-5p on invasive ability, EMT, and anoikis resistance, indicating that miR-525-5p acts as a tumor suppressor in CC largely through repression of UBE2C/ZEB1/2 signaling. Conclusions Taken together, our data identify a novel signaling axis of miR-525-5p/UBE2C/ZEB1/2 in repressing EMT and anoikis resistance, and likely serve as a potential therapeutic target for CC metastasis and prognosis as well as a therapeutic application.