UP - logo
E-resources
Full text
Peer reviewed
  • Measurement and identificat...
    Chen, Wei; Jana, Debasish; Singh, Aryan; Jin, Mengshi; Cenedese, Mattia; Kosova, Giancarlo; Brake, Matthew R.W.; Schwingshackl, Christoph W.; Nagarajaiah, Satish; Moore, Keegan J.; Noël, Jean-Philippe

    Mechanical systems and signal processing, 03/2022, Volume: 166
    Journal Article, Web Resource

    Jointed structures are ubiquitous constituents of engineering systems; however, their dynamic properties (e.g., natural frequencies and damping ratios) are challenging to identify correctly due to the complex, nonlinear nature of interfaces. This research seeks to extend the efficacy of traditional experimental methods for linear system identification (such as impact testing, shaker ringdown testing, random excitation, and force or amplitude-control stepped sine testing) on nonlinear jointed systems, e.g., the half Brake–Reußbeam, by augmenting them with full-field data collected by high-speed videography. The full-field response is acquired using high-speed cameras combined with Digital Image Correlation (DIC), which enables studying the spatial–temporal dynamic characteristics of the system. As this is a video-based experiment, additional constraints are attached to the beam at the node points to remove the rigid body motion, which ensures that the beam is in the view of the camera during the entire test. The use of a video-based method introduces new sources of experimental error, such as noise from the high-speed camera’s fan and electrical noise, and so the measurement accuracy of DIC is validated using accelerometer data. After validating the DIC data, the measurements are recorded for several types of excitation, including hammer testing, shaker ringdown testing, fixed sine testing, and stepped sine testing. Using the DIC data to augment standard nonlinear system identification techniques, modal coupling and the mode shapes’ evolution are investigated. The suitability of videography methods for nonlinear system identification of nonlinear beams is explored for the first time in this paper, and recommendations for techniques to facilitate this process are made. This article focuses on developing an accurate data collection methodology as well as recommendations for nonlinear testing with DIC, which paves the way for video-based investigation of nonlinear system identification. In Part-II (Jin et al., 2021) of this work, the same data set is used for a rigorous assessment of nonlinear system identification with full-field DIC data. •Nonlinear system identification strategies are applied to a jointed structure.•The use of Digital Image Correlation for nonlinear system identification is assessed.•A novel shaker ringdown excitation method is proposed.•Hardening-softening behavior is observed in the frequency response of the structure.•Modal interactions between the first and third mode are observed.