UP - logo
E-resources
Full text
Peer reviewed
  • Propagation of Slow Slip Le...
    KATO, Aitaro; OBARA, Kazushige; IGARASHI, Toshihiro; TSURUOKA, Hiroshi; NAKAGAWA, Shigeki; HIRATA, Naoshi

    Science (American Association for the Advancement of Science), 02/2012, Volume: 335, Issue: 6069
    Journal Article

    Recordings by Japan's dense seismic network in the days and weeks before the 2011 Mw 9.0 Tohoku-Oki earthquake provide an opportunity to interrogate what caused the dynamic rupture of one of the largest earthquakes on record. Using a method to extract small earthquakes that are often obscured by overlapping seismic waves, Kato et al. (p. 705, published online 19 January) identified over a thousand small repeating earthquakes that migrated slowly toward the hypocenter of the main rupture. Based on the properties of these foreshocks, the plate interface experienced two sequences of slow slip, the second of which probably contributed a substantial amount of stress and may have initiated the nucleation of the main shock. Many large earthquakes are preceded by one or more foreshocks, but it is unclear how these foreshocks relate to the nucleation process of the mainshock. On the basis of an earthquake catalog created using a waveform correlation technique, we identified two distinct sequences of foreshocks migrating at rates of 2 to 10 kilometers per day along the trench axis toward the epicenter of the 2011 moment magnitude (Mw) 9.0 Tohoku-Oki earthquake in Japan. The time history of quasi-static slip along the plate interface, based on small repeating earthquakes that were part of the migrating seismicity, suggests that two sequences involved slow-slip transients propagating toward the initial rupture point. The second sequence, which involved large slip rates, may have caused substantial stress loading, prompting the unstable dynamic rupture of the mainshock. PUBLICATION ABSTRACT