UP - logo
E-resources
Full text
Peer reviewed Open access
  • Semiconducting MOFs on ultr...
    Lim, Hyeongtae; Kwon, Hyeokjin; Kang, Hongki; Jang, Jae Eun; Kwon, Hyuk-Jun

    Nature communications, 05/2023, Volume: 14, Issue: 1
    Journal Article

    Due to rapid urbanization worldwide, monitoring the concentration of nitrogen dioxide (NO2), which causes cardiovascular and respiratory diseases, has attracted considerable attention. Developing real-time sensors to detect parts-per-billion (ppb)-level NO2 remains challenging due to limited sensitivity, response, and recovery characteristics. Herein, we report a hybrid structure of Cu3HHTP2, 2D semiconducting metal-organic frameworks (MOFs), and laser-induced graphene (LIG) for high-performance NO2 sensing. The unique hierarchical pore architecture of LIG@Cu3HHTP2 promotes mass transport of gas molecules and takes full advantage of the large surface area and porosity of MOFs, enabling highly rapid and sensitive responses to NO2. Consequently, LIG@Cu3HHTP2 shows one of the fastest responses and lowest limit of detection at room temperature compared with state-of-the-art NO2 sensors. Additionally, by employing LIG as a growth platform, flexibility and patterning strategies are achieved, which are the main challenges for MOF-based electronic devices. These results provide key insight into applying MOFtronics as high-performance healthcare devices.NO2 monitoring is important in urban areas where pollutant levels are typically higher. Here authors present a hybrid structure of laser-induced graphene and Cu3HHTP2, a 2D semiconducting MOF, for highly sensitive and rapid detection of NO2 at the parts-per-billion level.