UP - logo
E-resources
Peer reviewed Open access
  • A Combinatorial Approach to...
    Fujiwara, Yuichiro; Colbourn, Charles J

    IEEE transactions on information theory, 2010-July, 2010-07-00, 20100701, Volume: 56, Issue: 7
    Journal Article

    Test response compaction for integrated circuits (ICs) with scan-based design-for-testability (DFT) support in the presence of unknown logic values (Xs) is investigated from a combinatorial viewpoint. The theoretical foundations of X-codes, employed in an X-tolerant compaction technique called X-compact, are examined. Through the formulation of a combinatorial model of X-compact, novel design techniques are developed for X-codes to detect a specified maximum number of errors in the presence of a specified maximum number of unknown logic values, while requiring only small fan-out. The special class of X-codes that results leads to an avoidance problem for configurations in combinatorial designs. General design methods and nonconstructive existence theorems to estimate the compaction ratio of an optimal X-compactor are also derived.