UP - logo
E-resources
Full text
Peer reviewed
  • β‐C−H Allylation of Trialky...
    Zhang, Ming; Tang, Zi‐Lu; Luo, Heng; Wang, Xiao‐Chen

    Angewandte Chemie International Edition, January 25, 2024, Volume: 63, Issue: 5
    Journal Article

    Functionalization of the C(sp3)−H bonds of trialkylamines is challenging, especially for reactions at positions other than the α position. Herein, we report a method for β‐C(sp3)−H allylation of trialkylamines. In these reactions, which involve synergistic borane/palladium catalysis, an enamine intermediate is first generated from the amine via α,β‐dehydrogenation promoted by B(C6F5)3 and a base, and then the enamine undergoes palladium‐catalyzed reaction with an allene to give the allylation product. Because the hydride and the proton resulting from the initial dehydrogenation are ultimately shuttled to the product by B(C6F5)3 and the palladium catalyst, respectively, these reactions show excellent atom economy. The establishment of this method paves the way for future studies of C−H functionalization of trialkylamines by means of synergistic borane/transition‐metal catalysis. The β‐C−H allylation reactions of trialkylamines with allenes were accomplished by a synergistic borane/palladium catalysis. The borane and palladium catalysts promoted the formation of an enamine intermediate from a trialkylamine and a palladium‐π‐allyl intermediate from an allene, respectively.