UP - logo
E-resources
Peer reviewed Open access
  • Direct measurements of quas...
    Nafsin, Nazia; Castro, Ricardo H.R.

    Journal of materials research, 01/2017, Volume: 32, Issue: 1
    Journal Article

    Nanocrystalline bulk materials (also called nanograined materials) are intrinsically unstable due to the excess grain boundary (GB) free energies. Dopants designed to segregate to boundaries have been proposed to lower excess GB energies, increasing stability against coarsening and enabling nanostructure features to survive high temperature processing and operational environments. It has been theoretically proposed that the GB energy of a material can eventually become zero as a function of dopant concentration, signifying negligible driving force for growth—an infinitely stable nanomaterial. In this work we use ultrasensitive microcalorimetry to experimentally measure the absolute GB energy of gadolinium-doped nanocrystalline zirconia as a function of grain size and show that the energy can indeed reach a quasi-zero energy state (∼0.05 J/m2) when a critical GB dopant enrichment is achieved. This thermodynamic condition leads to unprecedented coarsening resistance, but is a temperature dependent function; since increasing temperatures deplete the GB as the dopant dissolves back in the crystalline bulk.