UP - logo
E-resources
Peer reviewed Open access
  • Entry and Distribution of M...
    Monier, Anne; Adle-Biassette, Homa; Delezoide, Anne-Lise; Evrard, Philippe; Gressens, Pierre; Verney, Catherine

    Journal of neuropathology and experimental neurology 66, Issue: 5
    Journal Article

    Microglial cells penetrate into and scatter throughout the human cortical grey and white matter according to a specific spatiotemporal pattern during the first 2 trimesters of gestation. Routes of entry were quantitatively and qualitatively different from those identified in the diencephalon. Starting at 4.5 gestational weeks, amoeboid microglial cells, characterized by different antibodies as Iba1, CD68, CD45, and MHC-II, entered the cerebral wall from the ventricular lumen and the leptomeninges. Migration was mainly radial and tangential toward the immature white matter, subplate layer, and cortical plate, whereas pial cells populated the prospective layer I. The intraparenchymal vascular route of entry was detectable only from 12 gestational weeks. Interestingly, microglial cells accumulated in restricted laminar bands particularly at 19 to 24 gestational weeks among the corona radiata fibers rostrally, extending caudally in the immature white matter to reach the visual radiations. This accumulation of proliferating MIB1-positive microglia (as shown by MIB1-Iba1 double immunolabeling) was located at the site of white matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes and in injury to the developing brain.