UP - logo
E-resources
Peer reviewed Open access
  • Functional Heterogeneity of...
    Klco, Jeffery M.; Spencer, David H.; Miller, Christopher A.; Griffith, Malachi; Lamprecht, Tamara L.; O’Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Fulton, Robert S.; Eades, William C.; Link, Daniel C.; Graubert, Timothy A.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    Cancer cell, 03/2014, Volume: 25, Issue: 3
    Journal Article

    The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole-genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients. •AML subclones are discrete, genetically distinct entities in AML samples•AML subclones often have unique functional and morphological properties•Engraftment of AML cells in mice is not defined by evolutionary hierarchy•The AML founding clone is not equivalent to the AML-initiating cell in mice Klco et al. track acute myeloid leukemia (AML) subclones identified by whole-genome sequencing and find that subclones of AML can correspond to different cellular populations within a single AML sample and can have different functional properties in vitro and in immunodeficient mice.