UP - logo
E-resources
Full text
Peer reviewed Open access
  • Structural Color of Multi-O...
    Lian, Yangbo; Zhang, Yongzhi; Liu, Furong; Chen, Qingyuan; Zhang, Lulu; Yin, Boshuo

    Photonics, 01/2023, Volume: 10, Issue: 1
    Journal Article

    The structural color based on the Fabry–Perot (F–P) resonator has been extensively applied lithography-free and tunable color displays. Conventional F–P cavity-based structural color technology exhibits a wide half maximum full width (fwhm), thus causing low color saturation. In this study, a Sc0.2Sb2Te3(SST) based structure of multi-order F–P cavity resonance was proposed to obtain high-saturation colors. The surface absorber of the multi-order F–P resonator structure was coated with an SST film, such that the reflection effect at nonresonant wavelengths was reduced. Moreover, ITO layer stacking served as F–P cavity resonance for multi-level modulation, and only a resonant wavelength was allowed to reflect. On that basis, the fwhm of nearly 25 nm and a peak reflectance of 90 was achieved. With the above structure, the color saturation can be dynamically regulated by the phase state of the SST. It is noteworthy that 60% sRGB color gamut space and 50% aRGB color gamut space can be currently achieved. The proposed modulation subsurface is expected to expand the color range of high-level and micro-nano display technology.