Music identification via audio fingerprinting has been an active research field in recent years. In the real-world environment, music queries are often deformed by various interferences which ...typically include signal distortions and time-frequency misalignments caused by time stretching, pitch shifting, etc. Therefore, robustness plays a crucial role in music identification technique. In this paper, we propose to use scale invariant feature transform (SIFT) local descriptors computed from a spectrogram image as sub-fingerprints for music identification. Experiments show that these sub-fingerprints exhibit strong robustness against serious time stretching and pitch shifting simultaneously. In addition, a locality sensitive hashing (LSH)-based nearest sub-fingerprint retrieval method and a matching determination mechanism are applied for robust sub-fingerprint matching, which makes the identification efficient and precise. Finally, as an auxiliary function, we demonstrate that by comparing the time-frequency locations of corresponding SIFT keypoints, the factor of time stretching and pitch shifting that music queries might have experienced can be accurately estimated.
In this paper, we consider the problem of detecting a primary user in a cognitive radio network by employing multiple antennas at the cognitive receiver. In vehicular applications, cognitive radios ...typically transit regions with differing densities of primary users. Therefore, speed of detection is key, and so, detection based on a small number of samples is particularly advantageous for vehicular applications. Assuming no prior knowledge of the primary user's signaling scheme, the channels between the primary user and the cognitive user, and the variance of the noise seen at the cognitive user, a generalized likelihood ratio test (GLRT) is developed to detect the presence/absence of the primary user. Asymptotic performance analysis for the proposed GLRT is also presented. A performance comparison between the proposed GLRT and other existing methods, such as the energy detector (ED) and several eigenvalue-based methods under the condition of unknown or inaccurately known noise variance, is provided. Our results show that the proposed GLRT exhibits better performance than other existing techniques, particularly when the number of samples is small, which is particularly critical in vehicular applications.
The problem of opportunistic access of parallel channels occupied by primary users is considered. Under a continuous-time Markov chain modeling of the channel occupancy by the primary users, a ...slotted transmission protocol for secondary users using a periodic sensing strategy with optimal dynamic access is proposed. To maximize channel utilization while limiting interference to primary users, a framework of constrained Markov decision processes is presented, and the optimal access policy is derived via a linear program. Simulations are used for performance evaluation. It is demonstrated that periodic sensing yields negligible loss of throughput when the constraint on interference is tight.
Single-walled carbon nanotubes (SWCNTs) have been shown to exhibit excellent electrical properties, such as ballistic transport over several hundred nanometers at room temperature. Field-effect ...transistors (FETs) made from individual tubes show dc performance specifications rivaling those of state-of-the-art silicon devices. An important next step is the fabrication of integrated circuits on SWCNTs to study the high-frequency ac capabilities of SWCNTs. We built a five-stage ring oscillator that comprises, in total, 12 FETs side by side along the length of an individual carbon nanotube. A complementary metal-oxide semiconductor-type architecture was achieved by adjusting the gate work functions of the individual p-type and n-type FETs used.
We describe an all-fiber nonlinear interferometer based on four-wave mixing in highly nonlinear fiber. Our configuration realizes phase-sensitive interference with 97% peak visibility and >90% ...visibility over a broad 554 GHz optical band. By comparing the output noise power to the shot-noise level, we confirm noise cancellation at dark interference fringes, as required for quantum-enhanced sensitivity. Our device extends nonlinear interferometry to the important platform of highly nonlinear optical fiber, and could find application in a variety of fiber-based sensors.
We demonstrate the addition of time gating to a standard optical spectrum analyzer (OSA) operating in the spectral region ~1.06μm . This is accomplished by opening for 7 ns the optical input to the ...OSA with an electrically driven poled fiber in a Sagnac loop. The sequential interrogation with nanosecond resolution of the reflection from three fiber Bragg gratings along a piece of fiber allows distinguishing the spectral peaks created with a minimum separation of 85 cm. The passive extinction ratio of this device is >40 dB and returns to >40 dB from >23 dB on a 35-ns time scale directly after time gating.
This paper explores the relationship that exists between nonlinear normal modes (NNMs) defined as invariant manifolds in phase space and the spectral expansion of the Koopman operator. Specifically, ...we demonstrate that NNMs correspond to zero level sets of specific eigenfunctions of the Koopman operator. Thanks to this direct connection, a new, global parametrization of the invariant manifolds is established. Unlike the classical parametrization using a pair of state-space variables, this parametrization remains valid whenever the invariant manifold undergoes folding, which extends the computation of NNMs to regimes of greater energy. The proposed ideas are illustrated using a two-degree-of-freedom system with cubic nonlinearity.
An integrated spectrum analyzer is useful for built-in self-test purposes, software-defined radios, or dynamic spectrum access in cognitive radio. The analog/RF performance is impaired by a number of ...factors, including thermal noise, phase noise, and nonlinearity. In this paper, we present an integrated circuit with two integrated RF-frontends, of which the outputs are crosscorrelated in digital baseband. We show by theory and measurements that the above-mentioned impairments are mitigated by this technique. The presented 65-nm CMOS prototype operates at 1.2 V, and obtains a noise floor below -169 dBm/Hz, an IIP 3 of +25 dBm, and more than 20 dB of phase-noise reduction. In a special high-impedance mode, an even lower noise floor below -172 dBm/Hz is obtained.
Three low-complexity relay-selection strategies, namely, selective amplify and forward (S-AF), selective decode and forward (S-DF), and amplify and forward with partial relay selection (PRS-AF) in a ...spectrum-sharing scenario are studied. First, we consider a scenario where perfect channel state information (CSI) is available. For these scenarios, the respective asymptotic outage behaviors of the secondary systems are analyzed, from which the diversity and coding gains are derived and compared. Unlike the coding gain, which is shown to be very sensitive with the position of the primary receiver, the diversity gain of the secondary system is the same as the nonspectrum-sharing system. In addition, depending on the cooperative strategy employed, an increase in the number of relays may lead to severe loss of the coding gain. Afterwards, the impacts of imperfect CSI regarding the interference and transmit channels on the outage behavior of the secondary systems are analyzed. On one hand, the imperfect CSI concerning the interference channels only affects the outage performance of the primary system, whereas it has no effect on the diversity gain of the secondary system. On the other hand, the imperfect CSI concerning the transmit channels of the secondary systems may reduce the diversity gain of the three relay-selection strategies to unity, which is validated by both theoretical and numerical results.
The sidelobe of noncontiguous orthogonal frequency-division multiplexing (OFDM) signals is required to be deeply suppressed in the licensed user's band in cognitive radio (CR) systems. To this end, ...we propose a novel method of adding extended active interference cancellation (EAIC) signals to suppress sidelobes and to shape the spectrum of the CR-OFDM signal with a cyclic prefix (CP). For simplicity, we called the proposed scheme EAIC-CP. The key idea of the proposed EAIC-CP is to employ some cancellation signals consisting of tones spaced closer than the interval of OFDM subcarriers to cancel the sidelobes of OFDM signals. Moreover, we derive the optimal cancellation signals to minimize the total sidelobe power subject to a self-interference constraint. Numerical results show that, when the guard bandwidth is equal to one OFDM subcarrier interval, the EAIC-CP scheme offers more than a 45.0-dB sidelobe suppression with unnoticeable signal-to-noise ratio (SNR) loss at a symbol error rate (SER) from 10 -2 to 10 -3 for 64 quadratic-amplitude modulation (64QAM). Moreover, the EAIC-CP scheme can achieve high spectrum efficiency with low implementation complexity.