UP - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Phytoplankton stoichiometry...
    Orizar, Iris D S; Repetti, Sonja I; Lewandowska, Aleksandra M

    Journal of plankton research, 06/2024
    Journal Article

    Abstract Ongoing climate warming alters precipitation and water column stability, leading to salinity and nutrient supply changes in the euphotic zone of many coastal ecosystems and semi-enclosed seas. Changing salinity and nutrient conditions affect phytoplankton physiology by altering elemental ratios of carbon (C), nitrogen (N) and phosphorus (P). This study aimed to understand how salinity stress and resource acquisition affect phytoplankton stoichiometry. We incubated a phytoplankton polyculture composed of 10 species under different light, inorganic nutrient ratio and salinity levels. At the end of the incubation period, we measured particulate elemental composition (C, N and P), chlorophyll a and species abundances. The phytoplankton polyculture, dominated by Phaeodactylum tricornutum, accumulated more particulate organic carbon (POC) with increasing salinity. The low POC and low particulate C:N and C:P ratios toward 0 psu suggest that the hypoosmotic conditions highly affected primary production. The relative abundance of different species varied with salinity, and some species grew faster under low nutrient supply. Still, the dominant diatom regulated the overall POC of the polyculture, following the classic concept of the foundation species.