UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Green-solvent processable p...
    Zhao, Mei; Wu, Quanping; Liu, Pengcheng; Luo, Ming; He, Jia; Xue, Song; Xiong, Yonglian; Zong, Xueping

    Materials today energy, June 2024, 2024-06-00, Letnik: 42
    Journal Article

    Exploring novel hole transport materials (HTMs) with high hole mobility and eco-friendly processability are imperative for the commercialization of perovskite solar cells (PSCs). However, there is a ‘trade-off’ that the introduction of large-conjugated units aiming to ensure high hole mobility, inevitably compromises the green-solvent solubility of HTMs. In this work, a hybrid strategy of rigidity and flexibility is proposed, in which the conjugated unit is assembled by the rigid binaphthylamine core, and the amide-bond constitutes the flexible backbone. Polar solubilizing units ethylenedioxythiophene and thiophene are used as bridges to construct two kinds of polymers, cited as EDOT-SMe and T-SMe, respectively. Both polymers achieve high hole mobility, well-matched energy levels and efficient defect passivation effect toward the perovskite films. When processing the HTM films with the green solvent (2-methylanisole), the corresponding PSCs deliver fill factors as high as 82.7% for EDOT-SMe and 81.9% for T-SMe, respectively. Consequently, power conversion efficiencies of 20.25% for EDOT-SMe and 20.09% for T-SMe are realized, outperforming that of commercial polymer polybis(4-phenyl) (2,4,6-trimethylphenyl)amine (PTAA, 19.71%). Moreover, PSCs with these polyamides achieve good long-term stability. This work paves a new path for exploring efficient and green-solvent processable polymeric HTMs. Display omitted •Two kinds of green-solvent processable polyamides are synthesized.•The polyamides are incorporated with multiple passivation anchors toward perovskite.•An improved long-term device stability is achieved by polyamide-based PSCs.