UP - logo
E-viri
Recenzirano Odprti dostop
  • Elevated LNG Vapour Dispers...
    Tan, Felicia; Tam, Vincent; Savvides, Chris

    Eng, 06/2021, Letnik: 2, Številka: 2
    Journal Article

    The dispersion of vapour of liquefied natural gas (LNG) is generally assumed to be from a liquid spill on the ground in hazard and risk analysis. However, this cold vapour could be discharged at height through cold venting. While there is similarity to the situation where a heavier-than-air gas, e.g., CO2, is discharged through tall vent stacks, LNG vapour is cold and induces phase change of ambient moisture leading to changes in the thermodynamics as the vapour disperses. A recent unplanned cold venting of LNG vapour event due to failure of a pilot, provided valuable data for further analysis. This event was studied using CFD under steady-state conditions and incorporating the effect of thermodynamics due to phase change of atmospheric moisture. As the vast majority of processing plants do not reside on flat planes, the effect of surrounding topography was also investigated. This case study highlighted that integral dispersion model was not applicable as key assumptions used to derive the models were violated and suggested guidance and methodologies appropriate for modelling cold vent and flame out situations for elevated vents.