UP - logo
E-viri
Recenzirano Odprti dostop
  • Evening Side EMIC Waves and...
    Yahnin, A. G.; Popova, T. A.; Demekhov, A. G.; Lubchich, A. A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.

    Journal of geophysical research. Space physics, July 2021, Letnik: 126, Številka: 7
    Journal Article

    We present the results of a multi‐point and multi‐instrument study of electromagnetic ion cyclotron (EMIC) waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAPs) A and B spacecraft for an event of 16 and 17 UT on December 1, 2018. VAP‐A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP‐B and further by Arase, as a dispersive enhancement of energetic proton flux. The proton flux enhancement at every spacecraft coincided with the EMIC wave enhancement or appearance. This data show the excitation of EMIC waves first inside an expanding substorm wedge and then by a drifting cloud of injected protons. Low‐orbiting NOAA/POES and MetOp satellites observed precipitation of energetic protons nearly conjugate with the EMIC wave observations in the magnetosphere. The proton pitch‐angle diffusion coefficient and the strong diffusion regime index were calculated based on the observed wave, plasma, and magnetic field parameters. The diffusion coefficient reaches a maximum at energies corresponding well to the energy range of the observed proton precipitation. The diffusion coefficient values indicated the strong diffusion regime, in agreement with the equality of the trapped and precipitating proton flux at the low‐Earth orbit. The growth rate calculations based on the plasma and magnetic field data from both VAP and Arase spacecraft indicated that the detected EMIC waves could be generated in the region of their observation or in its close vicinity. Plain Language Summary Electromagnetic ion cyclotron (EMIC) waves are believed to play a significant role in the dynamics of energetic protons and relativistic electrons in the Earth's magnetosphere. The properties of these waves are being intensively studied. We consider the conditions of the EMIC wave generation and the dynamics of the wave source during a substorm event using a unique configuration of three spacecraft (Arase and two Van Allen Probes). All spacecraft were at approximately the same distance from the Earth, forming a chain across the evening local time sector. Analyzing parameters of the wave generation obtained from in situ measured proton distribution function, we came to the conclusion that the waves could be generated within the substorm area, sometimes close to, but not necessary at the spacecraft location. As the substorm expands in longitude, the EMIC wave source exhibits a longitudinal drift. When substorm expansion stops, the wave generation region expands due to the magnetic drift of protons injected during the substorm. The observed wave properties show that the waves are able to precipitate energetic protons into the atmosphere. This is confirmed by observations of low orbiting satellites measuring proton precipitating fluxes. Key Points Westward propagation of the EMIC wave generation region is due to both the substorm expansion and azimuthal drift of injected protons Strong pitch‐angle diffusion regime is confirmed by observations of proton fluxes at low altitude and the diffusion coefficient calculation The diffusion coefficient maximum corresponds well to the energy range of the observed proton precipitation