UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Meteoric water alteration o...
    Amundson, Ronald

    Earth and planetary science letters, 04/2018, Letnik: 488
    Journal Article

    The geomorphology and geochemistry data gathered by the MER Opportunity at Meridiani Planum is a rich data set relevant to soil research on Mars. Many of the data, particularly with respect to outcrops at Victoria Crater, have been only partially analyzed. Here, the previously published geochemical profile of Endurance Crater is compared to that of Victoria Crater, to understand aspects of the post-depositional aqueous and chemical alteration of the Meridiani land surface. The landsurface bears cracking patterns similar to those produced by multiple episodes of wetting and drying in expansive materials on Earth. The geochemical profiles at both craters are nearly identical, suggesting (using mass balance methods) that a very chemically homogenous sedimentary deposit has been engulfed by the apparent surficial addition of S, Cl, and Br (and associated cations) since exposure to the atmosphere. The chemistry and mineralogy at both locations is one where the most insoluble of the added components resides near the land surface (Ca sulfates), and the more soluble components are concentrated at greater depths in a vertical pattern consistent with their solubility in water. The profiles, when compared to those on Earth (and to physical constraints), are most similar those generated by the downward movement of meteoric water. When this aqueous alteration and soil formation occurred is not well constrained, but the processes occurred between late Noachian (?) to late Amazonian times. The exposure of the Victoria crater walls, which occurred likely less than 107 y ago (late Amazonian), shows the accumulation of dust as well as evidence for aqueous concentration of NaBr and/or CaBr, possibly by deliquescence. By direct comparison to Earth, the regional soil at Meridiani Planum is a Typic Petrogypsid (a sulfate cemented arid soil), bearing similarities to very ancient soils formed in the Atacama Desert of Chile. The amount of water required to produce the soils ranges from a very low (and physically unlikely) quantity of 2–4 m, to possibly (and more likely) kilometers of water that were added in small individual increments over long spans of geological time. •The geochemical profiles of Endurance and Victoria craters on Mars are found to be nearly identical.•The chemical profiles appear to have formed by meteoric water over long times spans.•There is evidence for minor aqueous alteration of crater walls during the past few million years.