UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Nanoparticle–Biofilm Intera...
    Fulaz, Stephanie; Vitale, Stefania; Quinn, Laura; Casey, Eoin

    Trends in microbiology (Regular ed.), November 2019, 2019-11-00, 20191101, Letnik: 27, Številka: 11
    Journal Article

    The negative consequences of biofilms are widely reported. A defining feature of biofilms is the extracellular matrix, a complex mixture of biomacromolecules, termed EPS, which contributes to reduced antimicrobial susceptibility. EPS targeting is a promising, but underexploited, approach to biofilm control allowing disruption of the matrix and thereby increasing the susceptibility to antimicrobials. Nanoparticles (NPs) can play a very important role as ’carriers’ of EPS matrix disruptors, and several approaches have recently been proposed. In this review, we discuss the application of nanoparticles as antibiofilm technologies with a special emphasis on the role of the EPS matrix in the physicochemical regulation of the nanoparticle–biofilm interaction. We highlight the use of nanoparticles as a platform for a new generation of antibiofilm approaches. Self-adhering bacterial communities embedded in a matrix of hydrated macromolecules, known as biofilms, are prevalent and widespread. The matrix offers protection to the bacteria, reducing the cell susceptibility to antimicrobials.Functional nanoparticles are a promising technology to control or eradicate biofilms, providing the ability to enhance antimicrobial transport to the cell vicinity or alternatively to carry matrix dispersion agents.Critical to the development of novel strategies to control biofilm infections is an in-depth knowledge of the biofilm matrix which is still poorly understood due to its spatial and chemical variability and complexityA fundamental understanding of NP–EPS interactions has the potential to improve our ability to design more effective antibiofilm strategies.