UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Transport, sloughing and se...
    Flindt, M.R.; Pedersen, C.B.; Amos, C.L.; Levy, A.; Bergamasco, A.; Friend, P.L.

    Continental shelf research, 05/2007, Letnik: 27, Številka: 8
    Journal Article

    The study of plant-bound nutrient transport has been largely neglected in estuaries. Lately however, it has been shown that nutrients bound to macroalgae and seagrasses can constitute a major part of the nutrient transport in shallow tidal estuaries. Organic detritus in estuaries comes from various sources. This paper looks into the source of detritus from sloughing, and the transport behaviour of plant detritus under unidirectional flows. In order to determine the extent of the sloughing of macrophytes, the threshold current velocities for the traction and resuspension of the most common submersed macrophytes in Venice Lagoon ( Ulva lactuca, Enteromorpha sp., Ceramium rubrum, Cladophora sp., and Chaetomorpha linum) were studied in a laboratory flume. It was found that all macrophytes subjected to flows of 1.5–3.0 cm s −1 move initially as bed load. The threshold for suspension of the macrophyte tissue was at current speeds >3 cm s −1. The exception was the filamentous macroalgae, C. linum, which moved as bed load at all current speeds. This implies that the advection of plant-bound nutrients in Venice Lagoon is widespread and takes place over virtually all stages of the tide. Initial experiments were carried out on unattached macroalgae. A second study focused on the sloughing of attached macroalgae by steady currents. The threshold current speeds at which sloughing commenced varied between different types of algae, and sloughing rate was related largely to current speed. The resuspension rates were uniform between the different macrophyte groups. Our results help explain why plant matter has been trapped in nets close to the bed of Venice Lagoon on ebbing tides. It shows that a major component of the bedload is organic in origin. The results verify that a large proportion of the net nutrient export from estuaries is bound in macrophyte tissue. These findings need to be included in future ecological models that describe the resuspension, sloughing and settling of macrophytes.