UP - logo
E-viri
Celotno besedilo
Recenzirano
  • The ATLAS semiconductor tra...
    Abdesselam, A.; Adkin, P.J.; Allport, P.P.; Anghinolfi, F.; Becker, H.; Bell, W.; Beneš, P.; Bethke, S.; Blocki, J.; Brodbeck, T.J.; Bruckman, P.; Buttar, C.M.; Carroll, J.L.; Casse, G.L.; Chamizo, M.; Chesi, E.; Chilingarov, A.; Christinet, A.; Chu, M.L.; Danielsen, K.M.; de Jong, P.; Doherty, F.; Doležal, Z.; Dorholt, O.; Dwuznik, M.; Easton, J.M.; Ferrari, P.; Fleta, C.; Fox, H.; Freestone, J.; Gallop, B.J.; Greenall, A.; Grillo, A.A.; Grosse-Knetter, J.; Hauff, D.; Haywood, S.J.; Hegeman, S.J.; Hou, S.; Huse, T.; Ikegami, Y.; Jones, T.J.; Jusko, V.; Kaplon, J.; Kohriki, T.; Kondo, T.; Koukol, H.; Král, V.; Lee, S.C.; Leney, K.; Loebinger, F.K.; Ludwig, I.; Maassen, M.; Macpherson, A.; Magrath, C.A.; Mandić, I.; Mellado, B.; Miñano, M.; Mitsou, V.A.; Moed, S.; Muijs, A.J.M.; Nacher, J.; Nickerson, R.B.; Oye, O.K.; Parker, M.A.; Pellegrini, G.; Pelleriti, G.; Perrin, E.; Phillips, P.W.; Pritchard, T.; Raine, C.; Riadovikov, V.N.; Robichaud-Véronneau, A.; Rudge, A.; Saavedra, A.; Sadrozinski, H.F.W.; Sandaker, H.; Saxon, D.H.; Slavíček, T.; Smith, K.M.; Stapnes, S.; Strachko, V.; Teng, P.K.; Titov, M.; Tovey, D.R.; Troitsky, V.L.; Tseng, J.; Unno, Y.; Villani, E.G.; Vorobiev, A.P.; Warren, M.R.M.; Weber, M.; Weilhammer, P.; Wells, P.S.; Wiesmann, M.; Willenbrock, M.; Winton, J.; Wormald, M.P.; Wu, S.L.; Zhu, H.; Brenner, R.

    Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 06/2007, Letnik: 575, Številka: 3
    Journal Article

    The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 μ s buffer. The highest anticipated dose after 10 years operation is 1.4 × 10 14 cm - 2 in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area ∼ 70 cm 2 , each having 2 × 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X 0 , while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500 e - equivalent noise charge (ENC) rising to only 1800 e - ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 μ m ( r φ ) resolution perpendicular to the strip directions or 580 μ m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40–50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved.